

 ARL-TR-8474 ● AUG 2018

 US Army Research Laboratory

Linear Layers and Partial Weight
Reinitialization for Accelerating Neural
Network Convergence

by John S Hyatt and Michael S Lee

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official

endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8474 ● Aug 2018

 US Army Research Laboratory

Linear Layers and Partial Weight
Reinitialization for Accelerating Neural
Network Convergence

by John S Hyatt and Michael S Lee
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

August 2018

2. REPORT TYPE

Technical Report

3. DATES COVERED (From - To)

May–August 2018

4. TITLE AND SUBTITLE

Linear Layers and Partial Weight Reinitialization for Accelerating Neural

Network Convergence

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

John S Hyatt and Michael S Lee

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory

ATTN: RDRL-CIH-C

Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8474

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

We present two new approaches for accelerating the training of a neural network: 1) self-pruning using collapsible linear

layers, and 2) mid-training weight reinitialization. By following each nonlinear layer with linear layers, then folding these

linear layers into subsequent nonlinear layers after training, we are able to reproduce the benefits of overparameterizing the

network, then pruning individual elements after training. We also periodically reinitialize the weights of nonlinear elements

that do not improve the network’s performance during training, freezing retained weights for several epochs to force the

reinitialized weights to accommodate information already learned. Both methods demonstrate substantial gains: the resulting

models are simpler than those attained by standard pruning and initialization methods, require fewer computations to train,

and are more accurate than networks trained with those methods.

15. SUBJECT TERMS

machine learning, pruning, network compression, explainability, image painting

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

24

19a. NAME OF RESPONSIBLE PERSON

Michael S Lee

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-5888
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. A Simple Problem: Image Painting with Shallow Networks 2

3. Virtual Overparameterization with Collapsible Linear Layers 5

3.1 Description of the Method 5

3.2 Numerical Experiments 7

4. In-Training Weight Reinitialization 9

4.1 Description of the Method 9

4.2 Numerical Experiments 11

5. Conclusions and Further Work: Application to CNNs 14

6. References 16

Distribution List 18

Approved for public release; distribution is unlimited.

iv

List of Figures

Fig. 1 A simple dense network with inputs x and y. Hidden ReLU nodes are
represented in red and the output sigmoid node in green. 3

Fig. 2 The family of shapes that can be expressed by the network shown in
Fig. 1 using only three ReLU nodes (the minimal solution). Panels a–d
show the images used to train the network. Panels e–h show the
images predicted by the network, with decision boundaries
corresponding to the ReLU nodes shown in red. 3

Fig. 3 The simplest possible solution to the square. Panels a–c show the
outputs of the individual ReLU nodes, with the activation lines in red.
Panel d shows the linear combination of the ReLU outputs that is fed
into the output sigmoid node. Panel e shows the final result after the
sigmoid, together with all three decision boundaries. 4

Fig. 4 Two example networks equivalent to the one depicted in Fig. 1. ReLU
nodes are represented in red, linear nodes in gray, and the output
sigmoid node in green. .. 7

Fig. 5 Flowchart illustrating the reinitialization process 11

Fig. 6 A minimal solution for the star. Panels a–f show the outputs of the
individual ReLU nodes, with activation lines in red. Panel g shows the
linear combination of the ReLU outputs that is fed into the output
sigmoid node. Panel h shows the final result after the sigmoid, together
with all six decision boundaries. The inset in panel h shows the
original image. .. 12

Fig. 7 Example images produced by failed networks with a) 6, b) 8, c) 10,
and d) 11 sides .. 13

Fig. 8 Comparisons between networks trained with differing numbers of
nodes and numbers of reinitializations: 30 ReLU nodes and 0
reinitializations (red), 15 and 1 (blue), and 10 and 2 (green). Without
reinitialization, even the largest network often fails to converge to any
solution. ... 14

List of Tables

Table 1 Effect of collapsible linear layers ... 8

Table 2 Results from model 4 trials ... 8

Table 3 Effect of in-training weight reinitialization .. 13

Approved for public release; distribution is unlimited.

1

1. Introduction

Neural network research to date has prioritized the development of accurate,

reliable models. However, advances have often come at the expense of ever-

increasing network size and complexity,1,2 with the result that many state-of-the-art

machine learning models today are effectively black boxes.3 Network simplicity is

a critical consideration for developers and end users alike, for two reasons.

The first reason is efficiency. Neural networks have many applications in areas

where time and resources (e.g., computing power, memory, power) are strictly

limited. A cell phone cannot perform the same number of floating point operations

per second (FLOPS) as a supercomputer or even a desktop, and a self-driving car

has to make life-or-death decisions in a fraction of a second. Clearly, a slow,

computationally costly, complex model will fail to satisfy in such cases, no matter

how accurate or reliable.

The second reason is explainability. The more complex a model, the less likely a

human can understand it. Which parts of the network are important, and which can

be discarded? How could it be improved? Is this model a better fit for my problem,

or is that one? Why did it make this decision? Can I trust it? These are questions

that cannot be asked of a black box.

Increasing awareness of these problems has begun to move the field, leading to a

resurgence of interest in network simplification methods like pruning,4 the strategic

removal of noncontributing network elements. Pruning, in combination with the

appropriate data compression techniques, can dramatically reduce a network’s size

without compromising performance.5

However, only a fully-trained network can be pruned and compressed, so this

method does nothing to expedite network training, which can be quite time-

consuming and computationally expensive. Moreover, it is not always trivial to

determine ahead of time whether a given element’s contribution to the network is

significant, and generally this determination is made on the basis of a somewhat

arbitrary criterion.

These types of network-downscaling operations are necessary because, in practice,

networks are almost always extremely overparameterized.4,6 Overparameterization

helps a neural network avoid becoming trapped in an unfavorable local minimum

during training and failing to converge. The more weights a network has, the more

weights are likely to be randomly initialized with values that favor convergence,

and the more paths the gradient has available to approach the solution. As a result,

Approved for public release; distribution is unlimited.

2

generally speaking, smaller networks require more epochs to converge than larger

ones trained on the same data.6

We present two new methods for training a dense network that offer considerable

improvements in accuracy and rate of convergence while reducing the network size

before training:

 Inclusion of collapsible linear layers. The network is overpopulated with

linear layers before training. A linear layer, which simply outputs linear

combinations of the input, does not provide the network with increased

capacity, since it can simply be folded into the weights of the subsequent

layer. However, surprisingly, we find that it provides the same benefits as

overparameterization (faster convergence and better accuracy) due to the

increased number of parameters present during training. By collapsing the

layers after training we remove these excess parameters automatically

without reducing the amount of information contained in the network.

 In-training partial weight reinitialization. Rather than initializing a large

number of parameters once, at the beginning of training, and then pruning

the noncontributing ones at the end, we periodically reinitialize

noncontributing parameters during training. To keep the network stable, we

freeze the retained parameters for several epochs. We find that reinitializing

in this manner allows a smaller network to substantially outperform a larger

one, even if the number of reinitialized weights is smaller than the

difference between the two networks’ total parameter budgets.

2. A Simple Problem: Image Painting with Shallow Networks

We begin with a very simple dense network, shown in Fig. 1. It has two inputs, a

single hidden layer containing three ReLU nodes, and an output layer containing

one sigmoid node. Each (x, y) corresponds to a pixel in an image, and the network

output is the value of that pixel.7,8

Approved for public release; distribution is unlimited.

3

Fig. 1 A simple dense network with inputs x and y. Hidden ReLU nodes are represented in

red and the output sigmoid node in green.

We train the network to reproduce images such as those in Fig. 2a–d. The pixels in

these images have values of either 0 (purple) or 1 (yellow), and are arranged in

shapes with six or fewer vertices. Thus, they can be described by a linear

combination of three half-planes, corresponding to the three ReLU nodes in our

network, passed through a sigmoid function.

Fig. 2 The family of shapes that can be expressed by the network shown in Fig. 1 using only

three ReLU nodes (the minimal solution). Panels a–d show the images used to train the

network. Panels e–h show the images predicted by the network, with decision boundaries

corresponding to the ReLU nodes shown in red.

A successfully trained network reproduces these simple images very accurately, as

shown in Fig. 2e–h. The decision boundaries of the ReLU nodes are depicted in

red. A breakdown of contributions from each node is shown for the case of the

square in Fig. 3.

Approved for public release; distribution is unlimited.

4

Fig. 3 The simplest possible solution to the square. Panels a–c show the outputs of the

individual ReLU nodes, with the activation lines in red. Panel d shows the linear combination

of the ReLU outputs that is fed into the output sigmoid node. Panel e shows the final result

after the sigmoid, together with all three decision boundaries.

Note that, while we are evaluating the network using the same collection of (x, y)

it trained on, we are only trying to encode the images into the network, and are not

trying to generalize. In other words, the network’s intended purpose is to memorize

(overfit) the data.

Three further points merit discussion. First, each of the solutions shown in Fig. 2 is

the simplest possible solution corresponding to that image, but each image can also

be described with 𝑛 > 3 ReLU nodes, or 𝑁 > 1 hidden ReLU layers. In general,

neural networks rarely produce the simplest solution; more often, they result in

haphazard combinations of partial and/or redundant solutions that produce the same

final image, but are not so easily understood. Such networks also almost always

end up containing a large number of dead or otherwise noncontributing nodes.

Finally, a larger network requires more memory to store and more calculations to

evaluate, important considerations in real, more complex problems.

Second, training is not always successful. Depending on the random initialization

of the weights before training, one or more of the ReLUs may be trapped in an

unfavorable local minimum from which it cannot escape. This can either result in

an unbounded shape (if there are fewer than three decision boundaries) or a

bounded shape that is missing corners or otherwise distorted. These undesirable

results are more common when fewer ReLU nodes are included in the network,

since fewer nodes means fewer chances to get favorably initialized weights. The

same limits can lead to excessively long training times for smaller networks.

Approved for public release; distribution is unlimited.

5

Third, it is a rule of thumb that larger networks require more data to train than

smaller ones.9 It is therefore possible that smaller networks might be more robust

to small data sets, if their other problems could be solved.

The problems discussed previously represent areas of active research as they also

plague the more complex networks (e.g., deep convolutional networks) demanded

by more complex problems. Networks train inefficiently if they are small, but

express inefficient solutions if they are large, to say nothing of the resources large

networks require.

Despite their simplicity, study of these networks provides helpful understanding, in

part because the “right” answer is trivially obvious. This is definitely not the case

with, for example, a convolutional network used in image recognition. In the

following sections we use these networks to demonstrate that our new methods,

inclusion of collapsible linear layers and in-training partial weight reinitialization,

can reproduce the benefits of overparameterization without actually increasing the

number of parameters in the network.

All of our work is done in Keras on top of a TensorFlow backend, but these methods

could be implemented in any neural network programming environment.

3. Virtual Overparameterization with Collapsible Linear Layers

Linear layers have been used on several occasions to factorize weights in deep

networks.10–12 The idea is that an 𝑚 × 𝑛 weight matrix can be expressed as the

product of two matrices with dimensions 𝑚 × 𝑟 and 𝑟 × 𝑛. For small enough 𝑟, the

second representation has fewer parameters than the first.

We note that, in the context described previously, 𝑟 acts as a bottleneck, decreasing

the amount of information contained in a very wide, shallow network with many

redundant parameters. Our variation on the method allows the training process to

target a smaller network from the beginning and does not remove any information

from the system.

3.1 Description of the Method

The dense network shown in Fig. 1 can be equivalently expressed with a matrix

equation:

 (

𝑛11

𝑛12

𝑛13

) = relu [𝑨1 (
𝑥
𝑦) + 𝒃1], (1)

Approved for public release; distribution is unlimited.

6

 𝑧 = sigmoid [𝑨2 (

𝑛11

𝑛12

𝑛13

) + 𝒃2], (2)

where (𝑥, 𝑦) are the input coordinates, 𝑨1 and 𝑨2 are weight tensors, 𝒃1 and 𝒃2 are

bias vectors, (𝑛11, 𝑛12, 𝑛13) are the outputs of the ReLU nodes in the hidden layer,

and 𝑧 is the pixel value predicted by the network. Because of the nonlinear

activation functions present in these layers, the weight tensors and bias vectors

cannot be combined using the algebraic distributive property. However, this is not

the case for a linear layer.

Consider the networks shown in Fig. 4. Here, linear nodes are represented in gray.

The matrix equation for the network shown in panel a is

 (

𝑛11

𝑛12

𝑛13

) = relu [𝑨1 (
𝑥
𝑦) + 𝒃1], (3)

(

𝑛21

𝑛22

𝑛23

⋮
𝑛29)

= 𝑨2 (

𝑛11

𝑛12

𝑛13

) + 𝒃2, (4)

 𝑧 = sigmoid

[

𝑨3

(

𝑛21

𝑛22

𝑛23

⋮
𝑛29)

+ 𝒃3

]

. (5)

However, in this case the distributive property allows us to fold Eq. 4 into Eq. 5:

 𝑧 = sigmoid [𝑨2′ (

𝑛11

𝑛12

𝑛13

) + 𝒃2′], (6)

where 𝑨2
′ = 𝑨3𝑨2 and 𝒃2

′ = 𝑨3𝒃2 + 𝒃3. This process can be performed for any

number of linear layers, regardless of their size, meaning that a network with linear

layers contains exactly the same information as an otherwise identical network

where those layers have been folded into the weights of subsequent nonlinear

layers.

The key idea is that while these networks have identical capacity in principle, they

do not have the same number of parameters. The model shown in Fig. 1 has 9

parameters (weights + biases), while those shown in Figs. 4a and 4b have 55 and

Approved for public release; distribution is unlimited.

7

49, respectively. Further, their structures are different, meaning that they update

differently during training as the loss error is backpropagated through the network.

Fig. 4 Two example networks equivalent to the one depicted in Fig. 1. ReLU nodes are

represented in red, linear nodes in gray, and the output sigmoid node in green.

3.2 Numerical Experiments

We compare several different models and find that a simple network containing

linear layers dramatically outperforms an equivalent network without linear layers.

However, surprisingly, networks with linear layers also, in some respects,

outperform a network without linear layers, but with more ReLU nodes, subject to

the same parameter budget.

We randomly initialize and train each model 30 times using the same protocol. Each

iteration is given a practically unlimited number of epochs to train on (500,000),

but we use Keras’s built-in early stopping callback (patience 20) to stop when the

minimum loss (encountered so far) has not decreased for 20 consecutive epochs.

The batch size is 128. The loss metric is mean squared error. Before training, 𝑥 and

𝑦 are rescaled to lie between [−0.5,0.5] and shuffled.

The model shown in Fig. 1 is denoted model 1 and the models shown in Figs. 4a

and 4b model 2 and model 3, respectively. We also compare these to a larger

shallow network with 12 ReLU nodes and no linear layers, denoted model 4.

Approved for public release; distribution is unlimited.

8

Table 1 shows the results. ReLU nodes were considered “active” if their removal

from the network, without changing any other weights, increased the loss by a

factor of less than 1.5. In most cases, this corresponded to a node whose nonzero

half-plane fell outside of the image area. Models 1–3 can only reproduce the square

if all three nodes are active; model 4 has more options.

Table 1 Effect of collapsible linear layers

Model # parameters # active nodes
minimal correct

solutions

Loss (3 active

nodes)a

Run time(s) (3

active nodes)a

1 9 1.8 ± 0.81 6 (2.9 ± 0.1)  10–3 640 ± 80

2 55 2.8 ± 0.5 26 (2.7 ± 1.3)  10–4 190 ± 40

3 49 2.4 ± 0.7 15 (0.9 ± 1.8)  10–4 100 ± 30

4 49 6.1 ± 1.3 1 2.9  10–3 651

a Because only 1 of the 30 experiments with model 4 resulted in the minimal solution (3 active

nodes), we cannot provide standard deviations for the loss and run time for this case.

Our results show that, of models with only three ReLU nodes, the ones with linear

layers (models 2 and 3) were much more likely to train successfully than model 1.

Moreover, they took substantially less time to reach a solution, and the loss was a

factor of 10 lower, corresponding to visibly sharper edges on the predicted square.

Model 4 reproduced the square during all 30 trials, but only found the minimal

solution one time. The other 29 trials resulted in overparameterized solutions with

between 4 and 8 active nodes; detailed results from the trials of model 4 are shown

in Table 2.

Table 2 Results from model 4 trials

active nodes # occurrences Loss Run time(s)

3 1 2.9 × 10−3 651

4 3 (7 ± 9)  10–4 470 ± 110

5 4 (1.4 ± 0.5)  10–3 550 ± 130

6 11 (1.3 ± 0.2)  10–3 460 ± 50

7 7 (6 ± 3)  10–4 460 ± 90

8 4 (2.8 ± 1.2)  10–7 630 ± 30

Approved for public release; distribution is unlimited.

9

Even though the number of parameters in model 4 is similar to those in models 2

and 3, model 4 was considerably slower to converge and (except for the solutions

with eight active nodes) did not produce a significantly lower loss. We note that

evaluating each ReLU node’s loss to determine which nodes are active adds about

2 s to the run time per node, adding up to 10–20 s increased run time for model 4

relative to models 1–3. The rest of the time variation between models is due to

models 1 and 4 requiring thousands more epochs to converge than models 2 and 3.

Overall, this simple study implies that collapsible linear layers can reproduce at

least some of the benefits seen in deeper networks without actually increasing the

depth of the final network.

4. In-Training Weight Reinitialization

At the beginning of training, all weights and biases in the network are randomly

initialized. During conventional training, this is only done once. However, later

evaluation of the fully trained network shows that, typically, only a small fraction

of the network contributes to the solution,4,6 and the rest can be deleted with little

effect on the network.

We find that, unsurprisingly, many noncontributing nodes are locked into a “bad”

state early on in the training process. Rather than waiting until the end of training

to prune these nodes, we give them a “fresh start” by reinitializing them during

training. This produces higher-quality solutions at the cost of slightly increased

training time and calculations required per attempt. To our knowledge, this type of

training has not been performed before, although we are aware of one very recent

paper that applied a similar concept to very sparse networks optimized for

neuromorphic chips.13

4.1 Description of the Method

The procedure for training with reinitializations combines conventional training

and pruning methods, outlined as follows and illustrated with a flowchart in Fig. 5:

1) Randomly initialize the model’s weights and biases.

2) Train the model until the loss reaches a relatively stable value using Keras’s

built-in early stopping callback. In our experiments, we set patience to 20.

3) Evaluate the model on the training set, taking the resultant loss as a baseline.

4) Make a copy of the model.

Approved for public release; distribution is unlimited.

10

5) Evaluate each ReLU node to determine whether it is contributing to the

solution. We consider two categories of noncontributing nodes: low-loss

nodes and trivially redundant nodes.

a) Low-loss nodes. Nodes that can be deleted from the network

without increasing its loss above a certain threshold, which we set

at 1.5 times the baseline, are considered noncontributing.

b) Trivially redundant nodes. Take the normalized dot product of the

vectors formed by the weights (including bias) of each pair of nodes.

We consider node pairs where this value is 0.99 or more to be

trivially redundant, and consider larger groups of nodes trivially

redundant as long as each node in the group is trivially redundant

with at least one other.

6) Freeze all contributing nodes so that they cannot be updated during training.

We accomplish this by applying a mask to their incoming weights, biases,

and outgoing weights that sets their gradient to zero during the

backpropagation phase of each epoch. Because this functionality is not built

into Keras, we had to add a new function to the Optimizers base class

in optimizers.py.

7) Reinitialize noncontributing nodes. These nodes are not frozen.

8) Train the partially frozen network for a few epochs to force the newly

randomized nodes to accommodate information already learned by the

network (i.e., the weights and biases of the contributing nodes). In our

experiments, we set patience for this subtraining to 10.

9) Evaluate the model and compare the loss to the baseline. If the new loss is

not comparable to or less than the baseline, revert the model to the copy

made in step 4. We use 1.25 times the baseline as our loss threshold. This

step is necessary because even with contributing nodes frozen, it is possible

for the network to occasionally become trapped in a less favorable

configuration than before reinitialization.

10) If the model loss has not significantly worsened as a result of

reinitialization, unfreeze all nodes (remove the gradient mask).

11) Train the unfrozen network. We set patience to 20.

12) Repeat steps 4–11 as many times as desired.

Approved for public release; distribution is unlimited.

11

13) After the last reinitialization and subsequent training, prune any remaining

noncontributing nodes from the network. We use the same criteria from

step 5.

14) Perform a final training of the network. We set patience to 20.

The flowchart does not include steps unrelated to reinitialization, such as collapsing

linear layers.

Fig. 5 Flowchart illustrating the reinitialization process

4.2 Numerical Experiments

We test three different combinations of numbers of ReLU nodes and numbers of

reinitializations: 30 ReLU nodes and 0 reinitializations, 15 nodes and 1

reinitialization, and 10 nodes and 2 reinitializations. In each of these, the maximum

number of weight initializations that can occur is 30, although because some

weights are retained in the experiments with in-training reinitialization, in practice

more weights are initialized in the first set of experiments than the others. We also

Approved for public release; distribution is unlimited.

12

include three linear layers after each ReLU layer, each with the same size as the

ReLU layer.

For our test image, we use a six-pointed star, shown in Fig. 6 along with a minimal

solution that only requires six active ReLU nodes. This solution might be

considered the “right” answer, as it is both easy to understand and predicts the

image perfectly. Even for this comparatively simple image, however, a minimal

solution is difficult to achieve, requiring many reinitializations of a simple model

with six ReLU nodes. A more complex solution, with more active ReLU nodes,

might more reliably reproduce the star, but would be more difficult to understand.

Fig. 6 A minimal solution for the star. Panels a–f show the outputs of the individual ReLU

nodes, with activation lines in red. Panel g shows the linear combination of the ReLU outputs

that is fed into the output sigmoid node. Panel h shows the final result after the sigmoid,

together with all six decision boundaries. The inset in panel h shows the original image.

Table 3 shows the results of 30 experiments with each model. We find that even

though the set with 30 ReLU nodes and 0 reinitializations has the largest total

number of weight initializations, it performs substantially the worst.

Approved for public release; distribution is unlimited.

13

Table 3 Effect of in-training weight reinitialization

reinitializations /

nodes
sides # active nodes

sides per

active node
Loss Run time(s)

0 / 30 7 ± 4 7 ± 4 0.8 ± 0.5 (8 ± 7)  10–2 90 ± 30

1 / 15 11 ± 2 10 ± 2 1.1 ± 0.2 (2.3 ± 1.5)  10–2 115 ± 10

2 / 10 10 ± 2 8 ± 1 1.3 ± 0.2 (2.7 ± 1.5)  10–2 114 ± 13

First, it mostly produces output shapes that are dramatically different from the star,

as measured in the “# sides” column, containing the average and standard deviation

of the number of sides of the figure produced at the end of training. Examples of

such images are shown in Fig. 7. As a result, this set also produces output with the

largest loss.

Fig. 7 Example images produced by failed networks with a) 6, b) 8, c) 10, and d) 11 sides

In contrast, the sets with one and two reinitializations are more likely to produce

the correct answer, or one that is at least close. This is borne out further in Fig. 8,

which compares the number of images produced with a given number of sides

across all three sets of experiments. Only the largest network, trained without any

reinitializations, ever failed completely: in 7 out of 30 instances it produced a blank

image (0 sides), and it reproduced the star only 3 times.

Approved for public release; distribution is unlimited.

14

Fig. 8 Comparisons between networks trained with differing numbers of nodes and

numbers of reinitializations: 30 ReLU nodes and 0 reinitializations (red), 15 and 1 (blue), and

10 and 2 (green). Without reinitialization, even the largest network often fails to converge to

any solution.

Less obviously, the non-reinitialized network is also less efficient in the way it

produces its results. The ratio of the number of sides in an output image to the

number of active nodes required to produce that output gives an indicator of the

nodes’ independence and expressive power. (A similar argument could be made

about the product of the loss and the number of active nodes.) In the minimal answer

depicted in Fig. 6, this ratio would be 2. Even with reinitializations, none of our

experiments achieve that goal, but they are able to increase the ratio above 1, which

is not the case for the non-reinitialized network.

We finally note that all three sets of experiments have comparable runtimes;

although reinitialization increases the time to train by about 25%, it decreases the

average final loss by more than double that amount. At least for these experiments,

the tradeoff is worth it.

5. Conclusions and Further Work: Application to CNNs

We have shown that including collapsible linear layers and reinitializing weights

during training both significantly improve the outcome of training simple, fully

connected neural networks. To the best of our knowledge, both of these methods

are new.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12

o

cc
u

rr
en

ce
s

sides

Approved for public release; distribution is unlimited.

15

As a result of our focus on a bottom-up approach to explainability, this work

focuses on extremely simple, shallow networks, which limits the scope of our

conclusions. However, these new methods can be straightforwardly extended to the

more application-relevant problem of convolutional neural networks (CNNs):

 Inclusion of collapsible linear layers. While a linear layer cannot be

inserted directly between convolutional layers, the same effect can be

achieved with a set of 1 × 1 × 𝑛 convolution kernels with linear activations,

which can be collapsed in similar fashion to a linear fully connected layer.

 In-training partial weight reinitialization. The procedure would not

change except that kernels, not nodes, would be reinitialized.

 Trivially redundant kernels. While the method for identifying trivially

redundant nodes as described in section 4.1 does not generalize well to large

fully connected networks due to the size of the weight vectors, we expect it

to prove more useful in a CNN. Because convolution kernels are fairly small

(3 × 3, 5 × 5, etc.) even in large networks, trivially redundant kernels can

likely be identified by a simple dot product, rather than with a more

complicated procedure (e.g., comparing their outputs).

 Circularly permuted kernels. The output of a convolution kernel is

approximately equal to the output produced by a second kernel whose rows

and columns are circular permutations of those in the first kernel, provided

the input is large compared to the kernel. This is frequently the case, at least

in the shallower layers of the network. This implies that, under such

circumstances, a kernel is also trivially redundant with all of its circular

permutations.

Considering the computational expense associated with training CNNs, any

improvement due to these methods is likely to have a considerable impact. We are

in the process of updating our code to apply to CNNs to test this assertion.

Approved for public release; distribution is unlimited.

16

6. References

1. Goodfellow I, Benjio Y, Courville A. Deep learning. Cambridge (MA): MIT

Press; 2016 [accessed 2018 Mar 15]. https://www.deeplearningbook.org.

2. Szegedy C, Liu W, Yangqing J, Sermanet P, Reed S, Anguelov D, Erhan D,

Vanhoucke V, Rabinovich A. Going deeper with convolutions. Paper presented

at: CVPR 28. 2015 IEEE Conference on Computer Vision and Pattern

Recognition; 2015 Jun 7–12; Boston, MA.

3. Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining

explanations: an approach to evaluating interpretability of machine learning.

arXiv preprint 2018;arXiv:1806.00069.

4. LeCun Y, Denker JS, Solla SA. Optimal brain damage. In: Touretzky DS,

editor. Advances in Neural Information Processing Systems 2. NIPS 2; 1989

Nov 27–30; Denver, United States. San Francisco (CA): Morgan Kaufmann

Publishers; 1990.

5. Han S, Mao H, Dally WJ. Deep compression: compressing deep neural network

with pruning, trained quantization and Huffman coding. Paper presented at:

ICLR 2016. Proceedings of the 6th International Conference on Learning

Representations; 2016 May 2–4; San Juan, Puerto Rico.

6. Frankle J, Carbin M. The lottery ticket hypothesis: finding small, trainable

neural networks. arXiv preprint 2018;arXiv:1083.03635.

7. Pascanu R, Montúfar G, Bengio Y. On the number of response regions of deep

feedforward networks with piecewise linear activations. arXiv preprint

2013;arXiv:1312.6098.

8. Karpathy A. ConvnetJS demo: image painting. Stanford (CA): Stanford

University; c2014-2018 [accessed 2018 Aug 6]. https://cs.stanford.edu/people/

karpathy/convnetjs/demo/image_regression.html.

9. Figueroa RL, Zheng-Treitler Q, Kandula S, Ngo LH. Predicting sample size

required for classification performance. BMC Med Inform Decis Mak.

2012;12(8). doi: 10.1186/1472-6947-12-8.

10. Ba J, Caruana R. Do deep nets really need to be deep? In: Ghahramani Z,

Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors. Advances in

Neural Information Processing Systems 27. NIPS 27; 2014 Dec 8–11;

Montréal, Canada. Red Hook (NY): Curran Associates, Inc; 2014.

Approved for public release; distribution is unlimited.

17

11. Sainath TN, Kingsbury B, Sindhwani V, Arisoy E, Ramabhadran B. Low-rank

matrix factorization for deep neural network training with high-dimensional

output targets. Paper presented at: ICASSP 38. 2013 IEEE International

Conference on Acoustics, Speech, and Signal Processing; 2013 May 26–31;

Vancouver, Canada.

12. Xue J, Li J, Gong Y. Restructuring of deep neural network acoustic models with

singular value decomposition. In: Bimbot F, editor. 14th Annual Conference of

the International Speech Communication Association. INTERSPEECH 14;

2013 Aug 25–29; Lyon, France. Red Hook (NY): Curran Associates, Inc; 2013.

13. Bellec G, Kappel D, Maass W, Legenstein R. Deep rewiring: training very

sparse deep networks. Paper presented at: ICLR 2018. Proceedings of the 6th

International Conference on Learning Representations; 2018 Apr 30–May 3;

Vancouver, Canada.

Approved for public release; distribution is unlimited.

18

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 2 DIR ARL

 (PDF) IMAL HRA

 RECORDS MGMT

 RDRL DCL

 TECH LIB

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

 9 RDRL CIH S

 (PDF) D SHIRES

 M VINDIOLA

 RDRL CIH C

 E CHIN

 M LEE

 J HYATT

 S EDWARDS

 P WANG

 RDRL SLE W

 M MARKOWSKI

 A BEVEC

